
Basic geometry and applied mathematics used in the analysis 
 
 
 
 
 

 

 
 
 
 
 

 
 
The location of point ‘P’ results from the combined rotation of the ring from point ‘O’, 
about the Spin axis by Θ degrees and about the Tilt axis by Φ degrees. 
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The above three orthogonal views show the locus of a point ‘P’ on the ring as it simultaneously  
spins and tilts. 

 
[For clarity, only the first 180O of the locus of point ‘P’ as it moves from point ‘O’ are shown in  
the above three views.]
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For pure spin at ωωωωspin rads/sec, without tilting of the spinning ring ((ωωωωtilt = 0 and    φφφφ = 0), 
 
Displacements, δx = R.(1 - Cos (ωspin.t)) = R.(1 - Cos(Θ)), δy = R.Sin(Θ), z = 0 
Speed, dx/dt = -ωspin.R.Sin (ωspin.t) and dx/dΘ = -ωspin.R.Sin(Θ) 
Acceleration, d2x/dt2 = -ωspin

2.R.Cos (ωspin.t) and d2x/dΘ2 = -ωspin
2.R.Cos(Θ) 

 
 
 
For spin at ωωωωspin rads/sec, with simultaneous tilting (ωωωωtilt = C.ωωωωspin and φφφφ = C.ΘΘΘΘ), 
 
In plane of spin, displacements, δx = R.(1 - Cos (ωspin.t)) = R.(1 - Cos(Θ)), δy = R.Sin(Θ).Cos(φ), 

 [Program line 110] 
and Normal to plane of spin, displacement, δz = R.Sin(Θ).Sin(φ) = R.Sin(Θ).Sin(C.Θ)               
 
Speed, dz/dΘ = ωspin.R.[Cos(Θ).Sin(C.Θ) + C.Sin(Θ).Cos(C.Θ)] 

      = ωspin.R.[Cos(Θ).Sin(φ) + C.Sin(Θ).Cos(φ)]                       [Program lines 110 & 120] 
Acceleration, d2z/dΘ2 = ωspin

2.R.[-Sin(Θ).Sin(φ) + 2.C.Cos(Θ).Cos(φ) − C2.Sin(Θ).Sin(φ)] 
             {by product rule, dz/dΘ = u.dv/dΘ + v.du/dΘ} 

            [Program line 130] 
Parallel to plane of spin, displacement, δx = R.(1 - Cos(Θ)) 

[Program line 230] 
Speed, dx/dΘ = -ωspin.R.Sin(Θ) 
Acceleration, d2x/dΘ2 = -ωspin

2.R.Cos(Θ)                 
[Program lines 240 & 250] 

 
 
 
The BASIC numerical integration program, ‘GyroTorque.txt’, considers a spinning ring of mean  
radius, R, and mass, M, to be made up of a discrete number of elements, I, each element having a  
length of 2.π.R/I and a mass, δM = M/I. 
  
The above accelerations are calculated at each end of every element, and then averaged to give the 
accelerations at the centroid of each element, both normal to and parallel to the plane of spin. 
 
By Newton’s Second Law, the forces associated with these two accelerations at the centroid of each 
element are calculated, given by δF = (δM x Acceleration). 
          [Program lines 140 & 260] 
By calculating x and z offset distances, R.Cos(Θ) and R.Sin(Θ).Sin(φ) respectively, of every element 
from the centre of the ring as the ring spins and tilts, the resulting moment ( = δF x Offset) about the 
third (y) axis can then be calculated for every element of the whole ring.  

[Program lines 150 & 270] 
All of these elemental moments about the third (y) can then be summed for the whole ring to 
give a calculated value for the gyroscopic torque, Tgyro, about the gyroscopic precession axis.      

[Program lines 160 & 280] 
 
The result of this numerical integration calculation of the gyroscopic torque can then be directly 
compared with the formula-derived value of C.M.ωspin

2.R2. 
        



 
It is readily evident that the two results are in extremely close agreement, especially when a large 
number of integration elements are employed and when a small value of C is applied, the ratio of tilt 
speed to spin speed.  The fact that the two results are very slightly different points to the fact  
that both the formulae-derived value and the numerically integrated value are only approximate.   
 
 
The two values are approximate in different ways however, as follows:   
The approximation inherent in the numerically integrated value is due to the fact that a discrete number 
of elements are used, whereas the approximation inherent in the formula-derived value is due to the fact 
that the non-linearity associated with higher tilt speeds is ignored.   
 

 
Furthermore, the foregoing methodology can be condensed and expressed, after multiplication and 
substitution, to give the following expression for the total gyroscopic moment: 
 

            Tgyro = M.ωspin.ωtilt.R
2.  ∫ 

2π
 Cos(Θ).[2.Cos(Θ).Cos(C.Θ) – C.Sin(Θ).Sin(C.Θ)]dΘ 

         0 

 
Using the above expression for Tgyro, a separate simplified numerical integration program, ‘Integral.txt’, 
has been constructed in which the above definite integral between 2π and zero, representing the full 
360O rotation of the ring, is evaluated.   
 
The numerical result of this integration term is very close to 1.000, thus nominally corroborating the 
familiar formula, Tgyro = M.ωspin.ωtilt.R

2, for the resulting value of gyroscopic torque. 
 
It is probable that this expression tends to integrate to an exact value of 1 as the number of 

integration elements tends towards ∞ and as the (ωtilt/ωspin) speed ratio, C, tends towards zero, 
although this assertion has not yet been rigorously corroborated by pure mathematics.   
 
In reality though, some degree of tilt speed must always exist in order that a gyroscopic torque 
arises and therefore, the real value of this coefficient will never be exactly equal to 1, but will 
always be slightly less than 1. 
Consequently, it follows that the old familiar text book formula for gyroscopic torque,  
Tgyro = M.ωspin.ωtilt.R

2, can never be perfectly accurate. 
 
 
It is recommended that the assertions implicit in this paper be practically corroborated by 
experimental measurements of the value of gyroscopic torque developed for various  
values of C, the angular speed ratio, (ωtilt/ωspin). 
 


