Dynamic Calculations in the Alternative System of Units.

The customary system of units defines <u>time</u> in fundamental units, using the second [sec], and defines speed in derived units [metres per sec].

The alternative system of units defines <u>speed</u> in fundamental units, using the speed of light [c], and defines time in derived units [metres per c].

The following exercise shows that dynamic calculations involving Distance, Speed and Time, the alternative system of units (m, c & m/c) can be used in a similar way to the customary system of units (m, m/s & s).

Equivalents:					
Speed:	1 m/sec	=	3.6 km/	h =	
			2.2369 mile	୬/h =	
			3.2808 ft/se	÷C	
	1 km/h	=	0.2778 m/s	ес	
	1 mile/h	=	0.4470 m/s	ес	
	2.9979E+08 m/sec	=	1.0793E+09 km/	h =	
			6.7062E+08 mile	⊮/h = 1 0	C
	1 m/sec	=	3.3356E-09 c =	3.3356 r	าต
	0.2998 m/sec	=	1E-09 c =	1 r	าต
	2.9979E+08 m/sec	=	1 c =	1E+09 r	าต
Note: Units of nano-c [nc] are more convenient to use than units of [c].					
	1 km/h	=	9.2657E-10 c =	0.9266 r	าต
	1 mile/h	=	1.4912E-09 c =	1.4912 r	าต
	0.9836 ft/sec	=	1E-09 c =	- 1 r	าต
<u>Time:</u>	1 sec =	=	2.9979E+08 m/c	= 0.2998 r	n/nc
	3.3356 sec =	-	1E+09 m/c	= 1 r	n/nc
	3.3356E-09 sec =	=	1 m/c	= 1E+09 r	m/nc
		2	2		2,
Acceleration:	1 m/sec	_ =	1.1127E-17 c ² /n	ו = 11.127 r	nc ⁻ /m
	0.08987552 m/sec	=	1E-18 c ² /r	n = 1 r	nc²/m
	8.9876E+16 m/sec	2 =	1 c ² /r	n = 1E+18 r	nc²/m

Examples:

Example 1: A car travels at a constant speed of 48.5nc (52.344km/h) over a distance of 12 km. How long will the journey take in units of seconds and m/nc?

Customary	Time =	Distance =	<u>12</u>	x 3600 =	825.309	sec
system		Speed	52.344	(=	247.42	m/nc)
Alternative	Time =	Distance =	<u>12</u>	x 1000 =	247.423	m/nc
system		Speed	48.5	(=	825.31	sec)

Example 2:	A car travels a over a distand How long will	at a constan e of 1 km. the journey	t speed of 46.328 take in units of s	8nc (50 kn econds an	n/h) id m/nc?	
Customary system	Time =	<u>Distance</u> = Speed	<u>1</u> 50.000	x 3600 = (=	72.000 21.59	SEC m/nc)
Alternative system	Time =	<u>Distance</u> = Speed	<u>1</u> 46.328	x 1000 = (=	21.585 72.00	m/nc sec)
Example 3:	A car travels v (50.000km/h) over a distance How long will	with constan to a speed o æ of 1.0 km the journey	it acceleration fro of 60.0nc (64.755 take in units of s	om a speed 5km/h) econds an	d of 46.32 id m/nc?	8nc
Customary system	Accel. = $(V_2^2 = V_1^2 + 2.f.S)$	$\frac{V_2^2 V_1^2}{2 \text{ x Distance}}$	= <u>(64.755²-50.000²)</u> (2 x 1.0 x 1000)	x <u>1000</u> ² = 3600 ² (=	0.0653 0.7268	m/sec ² nc ² /m)
	$Time = (V_2 = V_1 + f.t)$	<u>V₂-V₁</u> Acel.	= (<u>64.755-50.000)</u> 0.0653	x <u>1000</u> = 3600 (=	62.7424 18.8097	SEC m/nc)
Alternative system	Accel. = $(V_2^2 = V_1^2 + 2.f.S)$	$\frac{V_2^2 - V_1^2}{2 \text{ x Distance}}$	= (<u>60.0²-46.328²)</u> (2 x 1.0 x 1000)	= (=	0.7269 0.0653	nc ² /m m/sec ²)
	$Time =$ $(V_2 = V_1 + f.t)$	<u>V₂-V₁</u> Acel.	= (<u>60.0-46.328</u>) 0.7269	= (=	18.8097 62.7425	m/nc sec)